
1 INTRODUCTION 

Even if we observe deformations of a material (i.e., a 
distribution of strain), we cannot immediately judge 
whether the distribution corresponds to the distribu-
tion of the internal stress. A strain distribution is con-
verted into a stress distribution based on Hooke's 
law, which is characterized as having two elastic 
moduli. For example, when we observe the defor-
mation of the material under longitudinal (vertical) 
uniaxial loading, not only longitudinal strain, but 
also lateral strains are generally observed in the ma-
terial. In such a case, non-zero internal stress exists 
only in the longitudinal direction in the material, i.e., 
the stresses in the lateral directions are evaluated to 
be zero. 

In this case, the distortions in the transverse direc-
tions are caused by the Poisson effect. By relying on 
the traditional elastic theory, the stress that causes 
these cannot be explained. Then, by further loading 
the material, the material shows cracks or splitting in 
the longitudinal direction, leading to failure. At this 
time, the fracture surface is in the longitudinal direc-
tion. Why did the material crack run vertically? The 
conventional theory cannot answer this simple ques-
tion because two elastic moduli are used in the tradi-
tional theory 

In the present paper, a new elastic theory is intro-
duced, and its characteristics are discussed. Accord-
ing to the new elastic theory, the simple questions 
stated above are clearly resolved. Furthermore, it is 
shown that the distribution of internal stresses re-
ceived from outer loading directly corresponds to the 
measured deformations (strain distribution). Finally, 
a new failure criterion is suggested. 

2 OUTLINES OF THE NEW ELASTICITY   
THEORY 

Here, we will derive the new elastic theory of Nakaza 
(2005) as a development of the conventional iso-
tropic elastic theory. First, the linear relationship be-
tween stress and strain in the conventional elasticity 
theory is as follows (Fung, 1994)： 

 
𝜎𝑖𝑗 = 𝜆𝜀𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝜀𝑖𝑗 + 𝛽𝑑𝑇𝛿𝑖𝑗     (1) 

 
where 𝜎𝑖𝑗 is the stress tensor, 𝜀𝑖𝑗 is the strain ten-
sor, 𝜆 and 𝜇  are the moduli of elasticity,  𝑑𝑇 is 
the temperature change, 𝛽 is the coefficient of lin-
ear thermal expansion, and δij is the Kronecker delta. 

Equation (1) shows the constitutive equation 
(general Hooke’s law) introduced in the traditional 
elastic theory, considering the thermal expansion. 
Nakaza (2005, 2009, 2010) recognized the existence 
of pressure in the internal stress of the elastic body. 
The relationship among pressure change, material 
density change and temperature change is generally 
given as follows, according to the thermodynamic 
equation of state: 

 
 𝑝 = 𝑅𝜌𝑇 (

𝑑𝜌

𝜌
+

𝑑𝑇

𝑇
)          (2) 

 
where 𝑝 is the inner pressure change, 𝜌 is the den-
sity, 𝑑𝜌 is the density change, 𝑇is the temperature, 
𝑑𝑇 is the temperature change, and R is the material 
constant. 

Therefore, by introducing Equation (2) to Equa-
tion (1), we have the following relationship: 

 
𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 2𝐸𝜀𝑖𝑗         (3) 

 
where, 𝐸 is the modulus characterizing the elastic-
ity, which may be a function of a state defined by in-
ner pressure and temperature, and is uni-modular for 
an elastic isotropic material. From Equation (1) and 
(3), the relationship 𝐸 = 𝜇 is clearly identified. 
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Note that when we consider the plasticity and the 
viscosity of a material, we may introduce the plastic-
ity strain, the rate of strain and viscosity coefficient 
to the fundamental relationship, i.e., Eq. (3). 

Equation (3) is the linear relationship between the 
stress and strain defined by Nakaza (2005). The first 
term on the right-hand side of Equation (3) represents 
the change in the internal pressure governed by the 
state equation shown by Equation (2) and the second 
term represents the elastic stress governed by 
Hooke's law. In this way, the elastic modulus is de-
fined as only one constant for Hooke’s law of an iso-
tropic elastic material, which conforms to Navier's 
theorem claiming that there should be only one elas-
tic modulus (Timoshenko, 1988). 

The internal pressure change shown in Equation 
(3) causes isotropic expansion or contraction of a ma-
terial. Therefore, we move the term of internal pres-
sure to the left-hand side in order to obtain the fol-
lowing equation: 

 
𝜎𝑖𝑗 + 𝑝𝛿𝑖𝑗 = 2𝐸𝜀𝑖𝑗.         (4) 

 
Alternatively, this equation can be written as fol-

lows: 
 

𝜏𝑖𝑗 = 2𝐸𝜀𝑖𝑗             (5) 
 

where 𝜏𝑖𝑗 is termed elastic stress. 
The physical meaning of Equation (4) is inter-

preted such that the left-hand side represents the 
stresses as the action that causes deformations of an 
elastic material, and the right-hand side represents 
the appearance showing the resistance of the material 
by elastic springs counter to the actions of the 
stresses. Equation (3) will be further transformed into 
another type of equation through the discussion in the 
following sections. 

3 PHYSICAL INTERPRETATION OF THE  
POISSON EFFECT 

Although conventional elastic theory recognizes the 
occurrence of strain due to the Poisson effect, it can-
not explain what stress causes it. On the other hand, 
the theory of Nakaza shown in Equation (3) is ex-
plained below. Here, the case of uniaxial compres-
sion of an elastic bar in the vertical direction is as-
sumed. At this time, the relationship between stress 
and strain in the longitudinal direction is given as fol-
lows: 

 
𝜎3 = −𝑝 + 2𝐸𝜀3            (6) 

 
where the suffix 3 indicates the direction of the bar 
axis. 

For the lateral directions, the following relations 
are given: 

 
0 = −𝑝 + 2𝐸𝜀1            (7) 

 
And 
 

0 = −𝑝 + 2𝐸𝜀2.           (8) 
 
From these, we have 
 

𝑝 = 2𝐸𝜀1             (9)   
 

and  
 

𝑝 = 2𝐸𝜀2.            (10) 
 

In these equations, (𝜀1, 𝜀2, 𝜀3)  and (𝜎1, 𝜎2,
𝜎3) are the principal strain and stress.  

From Equations (9) and (10), it is concluded that 
the Poisson effect is an isotropic deformation caused 
by the internal pressure change. According to 
Hooke's law, the change in internal pressure causes 
isotropic deformation of the material. 

In Equation (6), the external load is supported by 
a change in internal pressure and elastic stress. Since 
the deformation caused by the pressure change is iso-
tropic, the following relationship can be given: 

 
 𝑝 = 2𝐸𝜀𝑝             (11) 

 
where 𝜀𝑝 is the isotropic strain caused by the inter-
nal pressure change. This can be measured as the 
strain due to the Poisson effect being observed. From 
this equation, we have the pressure change in a ma-
terial. 

Substituting Equation (11) in to Equation (6), we 
have:  

 
𝜎3 = 2𝐸(𝜀3 − 𝜀𝑝).         (12) 

 
The stress, indicated by the left-hand side of 

Equation (12), due to the outer loading on a material 
is supported by the elastic stress formed by the strain 
observed after subtraction of the isotropic strain. The 
strain (𝜀3 − 𝜀𝑝)  can be written in 𝜀’3 , which is 
termed the effective strain corresponding to the 
stresses purely caused by outer loads. 

In traditional theory, for a uniaxial test of an elas-
tic bar, Poisson’s ratio has been defined as  

 
𝜀1 = 𝜀2 = −𝜈𝜀3          (13) 

 
where 𝜈 is the Poisson’s ratio. 

In Equation (13), the Poisson effect is not properly 
defined as satisfying the isotropic condition for an 
isotropic elastic material. Since in the direction of ax-
ial loading, any strain caused by the Poisson effect 
has not explicitly been introduced. 

From Equations (3) and (12), considering a con-
stant temperature condition, we have: 
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𝜀𝑝 = − 𝜃 𝜀𝑘𝑘           (14) 

 
𝜃 = 𝜈/(1 − 2𝜈).          (15) 

 
Instead of using Poisson’s definition for Poisson’s 

ratio, as in Equation (13), we here introduce the mod-
ified Poisson’s ratio, 𝜃, properly defined as satisfy-
ing the isotropic condition of the Poisson effect. 

From Equation (11) and (14), for the state change 
for a constant temperature, obtaining the relative vol-
ume change 𝜀𝑘𝑘, we have: 

 
𝑝 = 2𝐸 (−𝜃 𝜀𝑘𝑘).         (16) 

 

4  EFFECTS OF TEMPERATURE 

For temperature changes, under no outer loading on 
a material, the new theory explains that temperature 
change causes an inner pressure change as shown by 
Equation (2), so that the pressure change causes 
strain as shown in Equation (3). From the constitu-
tive equation (Equation (3) and the state Equation 
(2)), we have 

 
𝑝 = 2𝐸𝜀𝑖𝑗            (17) 

 
which shows the thermal expansions of an elastic 
material due to temperature changes. According to 
Hooke’s law, these thermal expansions are dynami-
cally caused by inner pressure changes. When we in-
troduce the inner pressure changes due to the temper-
ature changes, Equation (17) shows that the modulus 
between the pressure change and the strain can be 
given by the elasticity, 𝐸. 

5 FAILURE CRITERIA FOR ISOTROPIC MA-
TERIALS 

There are many types of failure criteria, and the cri-
teria of Tresca and von Mises are well known as 
basic failure criteria for isotropic materials. These are 
mathematically related to invariants of the stress 
and/or strain tensor (Chen & Saleeb, 1982). 

In the traditional theory, the stress tensor is split 
into two parts, the pure hydrostatic pressure and the 
pure shear stress, as follows: 

 
𝜎𝑖𝑗 = −�̅�𝛿𝑖𝑗 + 2𝐺(𝜀𝑖𝑗 − 1/3𝜀𝑘𝑘𝛿𝑖𝑗).   (18) 

 
where 𝐺 is the shear modulus, �̅� is the mean stress 
(pure hydrostatic stress) and the second term is the 
deviatoric stress (stress deviator) tensor. 

Denoting the deviatoric stress tensor by 𝜎′𝑖𝑗, we 
have:  

 

𝜎𝑖𝑗 = −�̅�𝛿𝑖𝑗 + 𝜎′𝑖𝑗         (19) 
 

or 
𝜎𝑖𝑗 = −�̅�𝛿𝑖𝑗 + 2𝐺𝜀′𝑖𝑗.       (20) 

 
Here 𝜀′𝑖𝑗  is the deviatoric strain tensor and is 

given as: 
 

𝜀′𝑖𝑗 = (𝜀𝑖𝑗 − 1/3𝜀𝑘𝑘𝛿𝑖𝑗).      (21) 
 

We can now compare Equation (20) with Equa-
tion (3) in order to determine the differences between 
these equations. 

Tresca’s failure criteria are related to the maxi-
mum shear stress at a point in a material as follows: 

 
𝑚𝑎𝑥 [

1

2
(𝜎1 − 𝜎2),

1

2
(𝜎2 − 𝜎3),

1

2
(𝜎3 − 𝜎1)] = 𝑘   

(22) 
 

where 𝜎1, 𝜎2, and 𝜎3 are the principal stresses, and 
𝑘 is the failure (yield) strength. 

On the other hand, von Mises criteria are related 
to the second invariant of deviatoric stress tensor as 
follows: 

 
𝐽2 − 𝑘2 = 0            (23) 

 
where 𝐽2  is the second invariant of the deviatoric 
stress tensor. 

There are also Drucker-Prager failure criteria re-
lating the two invariants to the above fundamental 
failure criterions: 

 
𝛼𝐼1 + √𝐽2 − 𝑘 = 0         (24) 

 
where 𝛼 is a material constant, and 𝐼1 is the first 
invariant of the stress tensor. 

The failure criteria introduced here, and many 
other failure criteria are thus associated with the in-
variants of the stress tensor or strain tensor. This is 
due to the mathematical property whereby the invar-
iants do not depend on how coordinate axes are set. 
However, there is no obvious physical reason to as-
sociate these invariants with failure criteria. 

The failure criteria discussed above indicate that at 
any point in an isotropic elastic body, when the stress 
or strain reaches a certain level, cracking or splitting 
occurs. There is a problem, however, with the setting 
of the failure surface. For example, in the case of uni-
axial pure compression for which the loading state is 
very simple, the fracture surface cannot be set even 
if we see that the stress state reaches a certain failure 
criterion. Therefore, according to the conventional 
theory, dual criteria (Wu, 1974) are recommended 
based on both the stress tensor for checking the fail-
ure point and the strain tensor for setting the fracture 
surface. 
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In contrast to these conventional failure criteria, 
Nakaza’s new theory presents a physically clear and 
simple method. 

First, Equation (3) gives the following equation for 
the work done by the stress and the inner pressure: 

 
∫(𝜎𝑖𝑗 + 𝑝𝛿𝑖𝑗)𝑑𝜀𝑖𝑗 = 𝐸𝜀𝑖𝑗

2 .      (25) 
 
The right-hand side of Equation (25) shows the 

strain energy as the work done by the internal pres-
sure 𝑝 and the stress 𝜎𝑖𝑗.  

As shown in Equation (4), it is physically ex-
plained that the isotropic elastic material is deformed 
under the influence of the stresses due to the actions 
of both the external force and the internal pressure 
change. The material withstands the actions of the 
stresses with the reaction of the elastic stress pro-
duced by a mechanical function of an elastic spring 
as an elastic body. That is, as a failure criterion, it is 
sufficient to investigate the magnitude of the elastic 
stress and/or the strain energy represented by the 
right-hand side of Equation (4) and the strain energy 
term of Equation (25). 

Instead, in term of the traditional theory of elas-
ticity, the strain energy is given as follows: 

 
∫ 𝜎𝑖𝑗𝑑𝜀𝑖𝑗 =

1

2
𝐾𝜀𝑘𝑘

2 + 𝐺𝜀′𝑖𝑗
2       (26) 

 
or 
 

∫ 𝜎𝑖𝑗𝑑𝜀𝑖𝑗 =
1

2
𝜆𝜀𝑘𝑘

2 + 𝜇𝜀𝑖𝑗
2        (27) 

 
where 𝐾 and 𝐺 are the bulk and the shear modu-
lus, respectively, 𝜀𝑘𝑘  is the volumetric strain, and 
𝜀′𝑖𝑗 is the deviatoric tensor of the strain tensor. Com-
paring Equations (26) and (27) with Equation (25), 
we can completely explain the physical differences 
between these equations. 

According to Equation (25), for example, if we 
consider the strain energy, the failure criterion is 
given as follows: 

 
𝐸𝜀𝑖𝑗

2 = 𝑘2             (28) 
 
where 𝑘 is the failure (yield) strength, which may 
generally be a function of state defined in terms of 
the inner pressure and temperature. 

The failure criteria shown in Equation (28) are 
similar to the von Mises failure criteria shown in the 
Equation (23), though the von Mises failure criteria 
focus on the deviatoric stress tensor of the stress ten-
sor. In the new theory, the criteria, for example, is 
physically based on the strain energy that shows the 
material deformation enduring both stresses due to 
external force and internal pressure. Of course, cre-
ating a failure criterion based on the maximum prin-
cipal stress or the maximum shear stress of the elastic 
stress is straightforward, shown as follows: 

 

 
𝐸𝜀1 = 𝑘              (29) 

 
or 
 

𝑚𝑎𝑥 [
1

2
𝐸(𝜀1 − 𝜀2),

1

 2
𝐸(𝜀2 − 𝜀3),

1

 2
𝐸(𝜀3 − 𝜀1)] = 𝑘  

(30) 
 

In the new elastic theory, there is no necessity to 
introduce the deviatoric stress or strain tensor as used 
in the conventional elastic theory. Furthermore, in 
the new failure criteria, in Equation (28), (29), and 
(30), the distributions of the stress and the strain di-
rectly correspond to each other such that the new the-
ory has the advantage that the failure surface based 
on the stress completely coincides with the failure 
surface based on the strain. 

Therefore, according to the new theory, there is no 
need to include a dual failure criteria system. The 
problem that arose in the case of uniaxial compres-
sion discussed earlier is also completely resolved by 
the new theory. 

Figure 1 shows the strengths of two types of con-
crete specimens under combined loading of pure 
compression, pure tension, pure shear, compression 
and shear, and tensile and shear. One of the concrete 
specimens has normal strength (compression 
strength, 𝜎𝑐ｒ = 28 𝑀𝑃𝑎 ) and the other has high 
strength (compression strength, 𝜎𝑐ｒ = 43 𝑀𝑃𝑎 ). 
Following Equation (5), the elastic stress is evalu-
ated. In Figure 1, both concrete specimens are shown 
in the graph.  

 

 

Figure 1. Strengths 𝜎𝑐𝑟  of two types of concrete specimens 

under combined loading of pure compression, pure tension, 

pure shear, compression and shear, and tension and shear. The 

solid line indicates Equation (29) for which 𝑘 is a function of 

pressure and temperature changes. The two arrows indicate the 

pure compression strengths for two types of concrete speci-

mens. All experimental data are from Okajima (1970). 

 
 
The result based on the new theory, represented by 

the solid line, creates a failure criterion in wide range 
from pure tension to pure compression. The x-axis of 
Figure 1, although indicated as the pure hydrostatic 
(mean) pressure �̅� , can be easily rewritten as the 
pressure 𝑝, as follows:    
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●σ𝑐𝑟 = 28MPa ○σ𝑐𝑟 = 43MPa 
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𝑝 =

3𝜈

1+𝜈
 �̅�.            (31) 

 
Let us note that the failure criterion, 𝑘, may not 

be a constant or a linear function, but rather must be 
a nonlinear function of pressure and temperature. 

6 CONCLUSION 

Based on the principles of physics, Nakaza presented 
a new elastic theory and described the differences be-
tween the new elastic theory and the conventional 
elastic theory. In the present paper, based on the new 
theory, the physical mechanism of the Poisson effect 
and the dynamics of the thermal expansion of an elas-
tic body were explained. The theory of failure criteria 
for isotropic elastic materials was then explained. 
The failure criteria based on the elastic stress was ap-
plied to two types of concrete specimens that have 
different compressive strengths, and the effective-
ness of the new theory was demonstrated. 
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